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Abstract. We solve the Hubbard model for the case of two partides on an arbitrary 
Bravais lattice exactly. Although the ground state is almost always a spin singlet, 
agreeing with the work of Kanamori, for topologically frustrated lattices with posi- 
tive hopping matrix elements, we find that the ground state is a spin triplet. This 
topological effect is shown to be rather weak, and does not always survive the jump to 
finite densities in the thermodynamic limit, where Pauli exclusion strongly stabilises 
a low spin state. For the twedimensional triangular lattice and the three-dimensional 
face-centred cubic lattice, the competition is fiercer and it is not clear whether the 
ferromagnetism survives. 

1. Introduction 

The Hubbard model is used to  describe a variety of physical systems [l]. The reason- 
ing is straightforward: i t  is probably the simplest model which purports to  describe 
the competition between chemical bonding and short-range Coulomb interactions be- 
tween particles. When chemical bonding dominates, the particles become effectively 
independent and may be described using a ‘single-particle’ description. The interest 
emerges in the opposite limit, when the short-range Coulomb interactions dominate. 
For this limit the particles may not be thought of as independent, and perform ‘cor- 
related’ motion; namely doing rather different things in the absence of other particles 
than they would do when other particles are nearby. The basic character of a strongly 
correlated system can be very different to  its weak-coupling counterpart, and the 
Hubbard model may be used to  try to  understand the physical explanations for these 
differences. This is our main motivation for studying the model. 

The  Hubbard model is conceptually very simple, having basically only two ‘param- 
eters’; a dimensionless ratio, corresponding to  the relative magnitudes of the energy 
scales of the bonding and the short-range Coulomb repulsion, and the number of elec- 
trons in the system. There is a second important consideration, however, and that is 
the topological connectivity of the atoms in the system. The effects of the connectivity 
will play a dominant role in the conclusions of our study. 

The Hubbard model is very difficult to  solve in general, but there are a few 
tractable limits. Weak coupling, when the bonding dominates, leads t o  a non- 
interacting electron gas and is therefore fairly well understood. Even for weak cou- 
pling, however, there are some surprises. For a bipartite lattice at half-filling, an 

0953-8984/90/5110343+16$03.50 @ 1990 IOP Publishing Ltd 10343 



10344 M W Long and R Fehrenbacher 

infinitesimal short-range Coulomb repulsion drives the system through a metal- 
insulator transition [2], a result which is not contained in the free electron description. 
Apart from this result and its analogues for non-bipartite connectivities, one should be 
fairly content with a nearly free electron description for the model. Strong-coupling, in 
comparison, is hardly understood a t  all. At half-filling, the model maps onto an insu- 
lating spin-half Heisenberg model [2], which is now believed to  exhibit long range Nee1 
order for most bipartite systems, even for the two-dimensional square lattice of cur- 
rent interest [3]. If the density is varied away from half-filling, the behaviour remains 
a mystery. For infinitely strong-coupling, when one hole is added to  an otherwise 
half-filled system, Nagaoka demonstrated that,  for bipartite systems, ferromagnetism 
is to be expected [4]. Whether or not this result survives the thermodynamic limit 
into a finite density of holes is still an open question [5]. The physical phenomena 
and interpretational problems encountered in the study of the Nagaoka problem are 
precasely analogous to  those found in the limit of this article and so we will now spell 
out the basic ideas. 

Firstly, topology plays an important role in Nagaoka’s analysis and, for the case 
of antiferromagnetically frustrated topologies with positive hopping (namely bonding) 
matrix elements, ferromagnetism is not the ground state. We will show an analogous 
result for our limit, with frustrated topologies showing special behaviour. Secondly, 
in attempting to  extend Nagaoka’s result to  finite densities, one encounters the effects 
of Fermi statistics and in particular Pauli exclusion. Electrons are fermions and this 
means that  no two electrons can sit in the same quantum mechanical state. This 
fact then leads to  the observation that two electrons with the same quantum numbers 
cannot get too close together and therefore suffer some form of ‘effective repulsion’. 
For the Hubbard model, where it is assumed that there is only one state per atom, 
this effective repulsion corresponds to  a restriction of a t  most one electron of each 
spin being allowed on any one atom at  any one time. The Hubbard model involves 
an additional repulsion; the short-range Coulomb repulsion acting between pairs of 
electrons of opposite spins on the same atom. In the strong-coupling limit, it might 
naively be argued that  since the content of both effects is to prohibit double occupancy 
of atoms, then the physical effects would be expected to be similar. This is in fact 
not true, and the Fermi statistics assumption involves the stronger constraint that  the 
wavefunction should be antisymmetric under exchange of the two particles, which in 
turn leads to  a ‘stronger’ repulsion in two and higher dimensions. This difference in 
behaviour, comparing the repulsions between parallel and antiparallel spins, will lead 
to the dominant complication in attempting to  go to the thermodynamic limit in our 
analysis. 

The limit that  we tackle in this article is of two electrons in an otherwise empty 
Bravais lattice. We solve this problem for all relative strengths of the bonding and 
repulsion. Although the solution to  this problem is unambiguous, we go on to  show 
that taking the thermodynamic limit is probably an insurmountable problem and so 
in a very similar way to  the Nagaoka result, it is not clear as to the meaning of our 
result. 

The low-density limit of the Hubbard model has been previously studied by 
Kanamori [6], who used an approximate technique to  deduce that paramagnetism 
is to  be expected. There was no topological influence on his analysis and he found 
it  difficult to  predict ferromagnetism for Nickel, a system which, incidentally, has an 
antiferromagnetically frustrated structure; the face-centred cubic (Fcc) lattice. 

The Hubbard model has some innate symmetries, which can be used to  deduce 
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the corresponding results for two holes in an otherwise full system. Mapping particles 
onto holes and vice versa is equivalent to  changing the sign of the hopping matrix 
element, and so the behaviour of two holes can be deduced by studying two electrons 
in the system with the opposite sign matrix element. For bipartite lattices, there is a 
further symmetry, where the relative sign of the orbitals on the two natural sublattices 
is reversed, and this also changes the sign of hopping matrix element. Therefore the 
behaviour of two holes in an otherwise full bipartite system is identical t o  the behaviour 
of two electrons in an otherwise empty bipartite system. 

In section 2 we solve the two-particle problem exactly and in section 3 we analyse 
a few small triangular lattice clusters, in order to  try to  deduce whether the solution 
extends to larger numbers of holes. In section 4 we look a t  an analytic 'Gutzwiller' ap- 
proximation and show that  the approximation 'predicts' the conjecture of this article. 
In section 5 we draw conclusions. 

2. Two particles in an otherwise empty lattice 

In this section we exactly solve the problem of the Hubbard model with two and only 
two electrons in an arbitrary Bravais lattice topology. Our motivation is twofold: 
firstly we would like to use the result in order to  deduce the likely phase diagram of 
the Hubbard model when near empty, and secondly, for the strong-coupling limit, we 
would like to  obtain a physical understanding of the topological phenomena which 
break the spin symmetry and stabilise the resulting coherence. 

This problem has been tackled before, for finite but vanishingly small electron 
densities, with various techniques [6], but we believe that the natural dependence of 
the result on topology has been missed in these previous analyses. The reader is 
directed towards the book by Daniel Mattis [6] which is relevant and provides context 
for the present article. We will solve the simpler problem of two electrons in an 
otherwise empty lattice and leave the non-trivial problem of extending the result to 
finite densities to  a later date. 

The Hubbard model may be written down in real space as 

H = - x t i i , c ~ , c i o  + U 
ii'o i 

where ci,, creates a particle of spin U on site i, the short-range Coulomb repulsion is 
assumed to  be onsite with strength U ,  and the hopping is often assumed to be between 
nearest-neighbours with strength t .  The most interesting limit to  this problem is the 
strong-coupling limit, where U >> t ,  a.nd we will pay particular attention to this limit 
by analysing the residual phenomena as U w 03. 

Although we expect the basic physical phenomena to be in real space, it transpires 
that the problem is more amenable to  reciprocal space analysis, mainly due to  the 
existance of Bloch's theorem. In reciprocal space the Hubbard Hamiltonian may be 
rewritten as 

where cLo creates an electron in a Bloch orbital, N is the number of atoms, and ~ ( k )  
is the single-particle spectrum, containing all the information about the hybridisation 
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connectivity. We are assuming one atom per unit cell in a periodic Bravais lattice. 
It is crucial to appreciate the dependence of our analysis on our choice of periodic 
boundary conditions. In the absence of periodicity, the corresponding loss of Bloch’s 
theorem leads to technical complications of little interest to the physics. We will also 
assume a discrete set of points in reciprocal space in order to avoid problems with the 
‘thermodynamic limit’. 

The analysis is variational in nature, but we include all  possible variations and 
hence deduce the exact ground state. The most general two particle wavefunction 
with S, = 0 is 

bb’ 

where A,,’ is symmetric for singlet solutions and antisymmetric for triplet solutions. 
The A,,, are complex parameters which we will determine variationally. 

The variational energy is simply 

which is made stationary by the solutions to the Schrodinger equation 

The triplet solutions to equation (2.5) do not involve U ,  due to Pauli exclusion 
and satisfy 

where k # k’, whereas the singlet solutions are more sophisticated and for the non- 
vanishing combination 

the spectrum 

A(q)  = ‘ q - p - p ‘ - G A p p ‘  
PP’ G 

satisfies 

The remainder of the problem is simply to  deduce whether the ground state energy is 
contained in the solutions of equations (2.8) or (2.6). 

In order to  investigate this formalism, we solve the square and triangular loops 
with nearest-neighbour hopping in the next two subsections, before moving on to 
deduce the lattice result. 
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2.1. The square loop 

The square loop with periodic boundary conditions has four k-points, with single- 
particle energies; - 2 t ,  0, 2 t ,  0 .  The two-particle triplet states are sums of single- 
particle energies and take the values; - 2 t ,  0,  2 t ,  since from Pauli exclusion, each 
state may only be singly occupied. The lowest energy state is therefore at - 2 t .  

For the singlet states, we find the lowest energy at  q = 0, for which equation ( 2 . 8 )  
reduces to  

1 2 U(E;  - 8 t 2 )  +- +-) = E,  - 4 t  E,  E s ( E i -  16t2) ' 
This equation always contains the ground state, which ranges from E,  H -4t + U / 4  in 
the weak-coupling limit to  E, I+ -2J2t  - 4 t2 /U  in the strong-coupling limit. Solving 
the two-particle problem directly shows that these results are correct. 

Particle-hole symmetry, applied to  the Hubbard model, ensures that the similar 
problem of two holes in an otherwise full system can be modelled by changing the 
sign of the hopping matrix element, t .  For the square, the topology is bipartite, and 
this ensures that  the physics is identical for either sign of the hopping matrix element. 
Considered together, these two symmetries show that two holes in an otherwise full 
system behave in an identical fashion to two particles in an otherwise empty bipartite 
lattice. 

One quite crucial observation is that  even in the limit U I+ CO, the singlet is 
the ground state by a huge energy margin. Naively one might suppose that kinetic 
exchange [7] would be the dominant physical effect in this limit, stabilising the singlet 
on a t 2 / U  energy scale. This turns out to  be a very weak effect, being dominated 
by a topological contribution on the t energy scale. We will return to  this point in 
subsection 2.6. 

2.2. The triangular loop 

The triangular loop with periodic boundary conditions has three 12-points, with single- 
particle energies; - 2 t ,  t ,  t .  The two-particle triplet states are sums of single-particle 
energies and take the values; - 2 ,  2 t .  The lowest energy state is a t  -t. 

For the singlet states, once again the lowest energy resides a t  q = 0, where 

1 U(Es  + at)  
i- &) = ( E ,  + 4t ) (E ,  - 2 t )  ' (2.10) 

This equation always contains the ground state, which ranges from E,  I-+ -4t + U / 3  
in weak coupling to E,  H -2t - 8 t 2 / U  in strong-coupling. These results are easily 
directly proved to  be correct. 

For the triangle, although the particle-hole symmetry is still relevant, the topology 
is not bipartite. This introduces a complication which reverses the result found near 
empty. If we change the sign of the hopping matrix element, using -t H s > 0,  then 
the best triplet solution resides a t  -2s. The best paramagnetic solution now has a 
non-zero Bloch momentum and satisfies 

2 1 U(Es  + s) 
+ m) = (E, - s ) (E ,  + 2 s )  

(2.11) 

The lowest energy solution ranges over E,  = -2s + U / 3  in weak coupling to  E,  = 
-s - 2 s 2 / U  in strong-coupling. The ground state is a triplet. 

Once again, it is instructive to  observe that even in the limit U I+ 00, the ground 
states are strongly stabilised by purely topological effects. 
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2.3. The lattice 

In this section we consider the problem for the lattice and show the result that: for a 
lattice whose single-particle ground state has only spin degeneracy, the interacting two- 
particle ground state is necessarily singlet, whereas for a lattice whose single-particle 
ground state has non-trivial degeneracy, the interacting two-particle ground state is 
necessarily triplet. This result picks out topologically frustrated lattices for special 
treatment. Frustrated lattices with positive hopping matrix elements are expected to  
have triplet ground states, while all other lattices are expected to  have singlet ground 
states. 

To prove this result, we observe that the lowest energy singlet to  equation (2.8) is 
likely to  have zero total Bloch momentum, and so we define the function 

(2.12) 

which comes from equation (2.8) evaluated at  q = 0,  and we have used the fact 
that  the Bravais lattice has inversion symmetry. The singlet spectrum is found when 
F ( E )  = 1/U.  The position of the energy of the lowest energy solution may be deduced 
by thinking about the analytic structure of this function. For the case where the single- 
particle ground state has only spin degeneracy, there is a unique minimum single- 
particle energy, c ( k O )  say. If we call the next lowest single-particle energy c ( k l ) ,  then 
the lowest triplet state is a t  energy ET = c(k0)  + ((12,). For E < 2c(k0) the function 
F ( E )  is negative and for the repulsive Hubbard model there can be no solution to 
F ( E )  = 1/U.  For 2c(k0) < E < 2c(k1), the function F ( E )  ranges continuously over 
all real values, starting at  $00 and ending a t  -00. There is clearly a singlet solution 
somewhere in this region. Let us now consider the value of 

(2.13) 

The first term in this sum is positive and all the subsequent terms are negative. The 
crucial observation is that  the positive term which occurs a t  k ,  is ezactly cancelled by 
the term which occurs a t  kl, and so F(ET) < 0. This in turn implies that  the singlet 
solution must have occured at  a lower energy, and is consequently relatively stable. 
The ground state for this case is therefore necessarily a singlet. 

Conversely, for the case where there is a non-trivial degeneracy to  the ground state 
of the single particle spectrum, a t  p ,  and p ,  say, then the lowest energy triplet state is 
ET = c(pO) + ~ ( p , )  = 2c(p,). If we reconsider F ( E )  for this case, then it remains true 
that for E < 2c(p0) ,  then F ( E )  < 0. For this case we must also consider non-zero 
momenta, but again there are no singlet solutions below ET, since ~ ( k )  + ~ ( k ’ )  > 
2c(p0) = E,  for all 12 and 12’. Therefore, there is certainly no singlet solution at  a 
lower energy than the triplet solution. If the function F ( E )  is analytic, then it is 
also clear that  there must be a finite energy gap between the triplet ground sta.te and 
the lowest energy singlet state when F ( E )  = 1/U,  provided that the repulsion U is 
non-vanishing. 

The theorem is therefore ‘if and only if’, with only pathological exceptions. 

2.4. Possible consequences 

In this subsection we consider the likely consequences of our result for the Hub- 
bard model on various simple lattices. For bipartite lattices we predict, along with 
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Kanamori [6], that  the phase diagram should yield paramagnetism at low concentra- 
tions for all values of t / U .  This result is then applicable to  the square lattice model 
of current interest in the study of the perovskite superconductors. 

For frustrated lattices, such as the triangular lattice or FCC lattice, one might 
expect ferromagnetism a t  low concentrations, when the hopping matrix element has 
the relevant sign (namely usually for low concentrations of holes). This is a possible 
explanation for Kanamori's inability to  understand ferromagnetic Nickel, because his 
model predicted paramagnetism whatever the lattice structure, and Nickel crystallizes 
with a FCC structure which is topologically frustrated. Unfortunately, the extension 
of our results across the thermodynamic limit is non-trivial as we shall show in the 
next subsection. 

2.5. Dimensionality and the thermodynamic limit 

In this subsection we consider the energy scale on which the Hubbard repulsion mod- 
ifies the total energy, and in particular the dependence on dimensionality. We will 
restrict attention to  the singlet ground state and approximately solve equation (2.8). 

If we rewrite the two-particle energy as E,  = 26(0)[1 - A], where A is the dimen- 
sionless correction to  the non-interacting problem, then equation (2.8) becomes 

(2 .14)  

where Y~ = c ( k ) / ~ ( O )  is the structure factor of the lattice which has been normalized 
t o  unity. 

The problem has then been reduced to  deducing the characteristics of the quantity 

(2.15) 

as a function of system size. If we assume that the contribution from A is vanishingly 
small, and take the continuum limit with a 'cut off' corresponding to k # 0,  then 

and so in three dimensions G ( N )  becomes constant while in two dimensions G ( N )  
diverges logarithmically 

Q 
A = J  for d = 3 ( 2 . 1 7 ~ )  

N 

A="" for d = 2 N l n N  (2.176) 

It is now clear that  the assumption that the contribution from A in evaluating G ( N )  
should be vanishingly small is confirmed. 

The  most important consequence of these results, is that  as the system size is 
scaled up, the energy loss induced by the repulsion is quite different for a singlet 
pair in comparison to  a triplet pair. The corresponding result for a triplet pair is 
A - Q N - ~ / ~ ,  which arises from the form of yk a t  small k. For both two and three 
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dimensions, the loss in energy for the singlet becomes vanishingly small in comparison 
to the loss in energy for the triplet as the system size diverges. This type of result 
is the main reason for suggesting that  the two-particle result may not survive the 
thermodynamic limit. 

Further insight into this problem may be obtained by considering finite numbers of 
particles in a system with diverging system size. Treating the non-interacting singlet 
solution as the starting point and employing a Gutzwiller variational ansatr [9], leads 
immediately to  the result that  the energy density correction to the non-interacting 
energy is of order 1/N and decays as the inverse system volume. Since the corre- 
sponding difference in the non-interacting energy density versus ferromagnetic energy 
density is of order 1/N21d, for three dimensions the low spin solution must win. For 
two dimensions the argument is inconclusive, although this may merely suggest that 
a Gutzwiller ansatz is an overestimate of the energy loss, as it is for the two-particle 
case where the logarithmic dependence is lost. We have a brief look at  triangular clus- 
ters in section 3,  in order to  try to  discover whether the two-particle result exteilds 
to  three particles in two dimensions. We also employ an analytic Gutzwiller ansatz  
for all electron densities in section 4, which gives further evidence for the likely phase 
diagram. 

As well as the two-dimensional triangular lattice, the result for the FCC lattice 
is also inconclusive. This is because the density of states for the FCC lat,tice shows 
low-dimensional behaviour, since the relevant states may be restricted to  lie in one x y  
plane with no corresponding loss in hopping energy. Although the observation that 
the relevant ground state degeneracy is one-dimensional suggests that  the behaviour 
should mimic two dimensions, in fact the reciprocal-space points corresponding to 
type I antiferromagnetism, namely (2r /a ) ( l1  O , O ) ,  (2~/u)(O, 1 , O )  and (2r /a ) (O ,O,  l) ,  
lead t o  special van Hove singularities yielding a square root divergence and pseudo- 
one-dimensional behaviour. The topological effects are immensely strong for the FCC 
lattice. 

For the two antiferromagnetically frustrated lattices of most physical interest, the 
strength of the topological contribution is comparable with that of the Pauli exclusion 
contribution. 

2.6. A simple explanation 

We conclude this section with a simple explanation for why non-frustrated systems 
might be expected to  have singlet ground sta.tes. Similar conceptual pictures appear 
in the work of Shastry et a l  [5]. 

For nearest-neighbour hopping, the kinetic energy may be thought of as analogous 
to the Laplacian in the continuum, for which the ground state has uniform phase. Even 
considering the two-particle problem as a one-particle problem in a higher-dimensional 
space, this analogy still holds. In this larger representation, the Hubbard interaction 
acts as a potential barrier along the ‘leading diagonal’. The stability of the singlet 
state may be considered to  correspond to the fact that ‘nodes cost kinetic energy’. 
The ground state is expected to maintain uniform phase in real space and, therefore, 
to  correspond t o  the singlet spin configuration. 

Instead of minimising the 
Laplacian one is maximising the Laplacian. In terms of ‘nodes’, one is attempting to 
introduce as many as possible into the wavefunction. There is no guarantee that all 
these nodes should be restricted to  real space, and introducing some ‘nodes’ into the 

For frustrated lattices this argument breaks down. 
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spin wavefunction in conjunction with the spatial wave function cannot be ruled out. 
Our triplet ground states are a concrete manifestation of this effect. 

The  strong-coupling limit with U = 00 deserves special consideration. There is 
still a very strong stabilising effect, which arises purely from the relationship between 
Fermi statistics and topology. Only when the two particles are nearby can the Hubbard 
interaction be felt, and so we would quite naturally expect to  find a local manifesta- 
tion of the phenomenon. Indeed, the single-loop analyses of subsections 2.3 and 2.4 
contain the effect, and may be used to  motivate an understanding of the mechanism. 
When U = CO, the only residual ‘interaction’ between the particles, is the interference 
between the different phases when the particles are interchanged. The behaviour of 
two particles on small loops directly leads t o  this interference between motion and 
statistics. The lowest order interchange occurs when a particle is taken once around 
a loop on which the second particle sits. When we allow the hopping phase t o  be 
optimised, then the resulting superposition of the states with or without interchange 
interferes constructively for the ground state spin symmetry and destructively for the 
other spin state. This might then be expected to be the dominant process in the 
strong-coupling limit. The results of subsections 2.3 and 2.4 are perfectly consistent 
with the predictions for the two-dimensional square and triangular lattices respec- 
tively, and may be used, in a convoluted fashion, to  give a prediction for the energy 
scale on which the magnetic coherence is stabilised, in terms of the probability of 
finding pairs of delocalised particles on the same loop. 

3. The triangular lattice 

Perhaps the simplest antiferromagnetically frustrat.ed topology is t8he two-dimensional 
triangular lattice with positive nearest-neighbour hopping matrix elements. The result 
of the last section suggests that  the ground state for two electrons hopping around in 
an otherwise empty triangular lattice would be a spin-triplet state. The ground state 
for this particular lattice is in fact unique and can be written down in both real and 
reciprocal space 

where i,, i, and i, are labels which run over the three natural real-space sublattices 
respectively, and where rtQ correspond to  the two degenerate minima of the single- 
particle non-interacting excitation spectrum. The ground state energy is -6 t ,  which 
can be readily understood from the real-space representation. In each real-space con- 
figuration, both particles take full advantage of the hops onto the unique unoccupied 
sublattice, with all other hops cancelling out.  This then constitutes an idea applicable 
to  smaller clusters, which may also be split up into three sublattices. In practice, 
we have always found this state (with zero probability of finding both particles on 
the same sublattice and with unique ‘chirality’ but appropriate real-space weighting) 
constitutes the triplet ground state of clusters with free boundary conditions. 

The main motivation for studying small clusters of atoms, is to  try to  find counter- 
examples opposing an attempt a t  extending the two-particle theorem to a three- 
particle theorem. In the non-interacting limit, there is no hope of extending the 
theorem to higher densities, since the ground state is paramagnetic. However, for 
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the strong-coupling limit, the Nagaoka problem near half-filling also predicts ferro- 
magnetism and so it is quite natural to conjecture that ferromagnetism persists all 
the way from two particles in an otherwise empty lattice to one hole in an otherwise 
half-filled lattice. 

4 r 4 4 5 6 4  

S 6 , / 4  5 6 , /  4- 3 

6 . 4  S 6 4 5 6 

1 2 3  1 2 3  1 , _ _ _ - - - -  

2 3 / L L - - - - /  2 5 ’ 1  2 

3 i z 3 i 2 3  

Figure 1. The 
numbers denote the sublattice on which the relevant atom lies, and the unit cells have 
been marked. The ground state energies for the second two choices are presented in 
table 1. 

The chosen clusters for our exact diagonalisation calculations. 

Since we have a theorem for two particles and a theorem for N - 1 particles, the 
first non-trivial test cluster involves at  least five atoms. Five atoms is particularly 
unappealing for triangular connectivity, and so we have elected to calculate with the 
two six-atom periodic clusters depicted in figure 1. The single-particle spectrum of 
the first cluster is very degenerate, with one state at 6 t ,  two states at  zero energy and 
the other three states are all degenerate at - 2 t .  For this case it is immediate that 
ferromagnetism is the ground state for three elect.rons, since all three electrons may be 
included with the unfrustrated bound. For the second cluster the situation is less clear, 
since the single-particle spectrum now is one state at 6 t ,  two states at  t ,  one state at 
-2 t and two degenerate ground states at  -3 t .  Although the first two electrons will 
necessarily be in a relative triplet, the third electron does not achieve the unfrustrated 
bound, and loses a full hop due to the effects of Pauli exclusion. In fact, an exact 
solution of the strong-coupling three-pa.rticle problem demonstrates that the ground 
state is indeed ferromagnetic, with a gap of 0.6974t to the lowest-lying total spin-half 
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state. At this rather small size of cluster, the ferromagnetism seems to  remain stable, 
supporting the conjecture that ferromagnetism remains a t  all doping concentrations 
up to  half-filling. Moving on to  four particles produces a surprise. Even though all 
other concentrations below half band-filling yield a ferromagnetic ground state, four 
particles have a total spin-singlet ground state, and further there is a spin-1 excitation 
below the lowest ferromagnetic solution. Cluster calculations are clearly not enough 
to  deduce any general trends a t  this order. 

Table 1. The results from our exact diagonalisation of the clusters depicted in 
figure 1. The results marked (t) agree with our conjecture and those marked (*) 
disagree with our conjecture. 

Six-particle cluster (positive matrix elements) 

Second Second 
Particle Total Lowest lowest highest Highest 
number spin energy energy energy energy 

1 112 -3.0000 -2.0000 1 .om0 6.0000 

2 1 -6.0000(t) -5.0000 4.0000 7.0000 
2 0 -4.9018 - 4.7791 3.6056 9.8036( t )  

312 -8.0000(t) -5.0000 5.0000 8.0000 
112 -7.3026 -6.1200 6.8941 8.9227( t) 
2 -7.0000 -4.0000 5.0000 6.0000 
1 -7.6146 -6.8133 6.1849 7.5202( *) 
0 -8.1693(*) -5.7856 6.6559 7.0891 

512 -6.0000(t) -1.0000 2 .om0 3.0000 
312 -5.3324 -5.0000 4.0000 4.5616 
112 -4.6814 - 4.6765 3.8173 4.7030(t) 

Nine-atom cluster (positive matrix elements) 

112 -3.0000 +o.oooo 0.0000 6.0000 

1 -6.0000(t) -3.0000 3.0000 6.0000 
0 - 5.2749 -4.5498 4.3723 10.5498( t) 
312 -6.0000 -3.0000 3.0000 6.0000 
112 -7.5747(*) -5.5027 7.2468 9.7163( t )  

For the present investigation, there is a competition between a topological effect 
which prefers ferromagnetic order and Pauli exclusion which naively prefers a total spin 
singlet. If we consider the infinitely strong-coupling triangular lattice Hubbard model 
with the opposite sign of matrix element, then the two effects should be in accord 
rather than in conflict. Analysis of the second six-atom cluster of figure 1, supports 
this idea, although once again the four-particle problem yields an unexpected spin-1 
ground state. The relevant ground state energies are detailed in table 1. 

The two six-atom clusters yield a ferromagnetic ground state a t  the three particle 
level. This fact suggests that there might be a general result a t  the three-particle 
level for periodic boundary conditions. The nine-atom cluster of figure 1 immediately 
eliminates any hope of this. Although the two-particle problem yields ferromagnetism, 
an additional particle involves a loss of 3 t from the non-interacting bound, and this 
Pauli-induced loss is much greater than the best low-spin result, which is the three- 
particle ground state by a full 1.5747 2. The only hope of demonstrating the conjecture 
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that  the infinitely strong-coupling triangular lattice is ferromagnetic for all fillings 
below half-filling and paramagnetic for all dopings above half-filling, seems to reside 
in ‘finite-size scaling’ simulations and even then seems beyond present-day computers. 

Another question one can address with these small cluster calculations is whether 
or not the boundary conditions are important. In order to  tackle this question, we 
have studied the seven-site cluster of a ring of six atoms and one central atom, with 
free boundary conditions. This cluster has been analysed previously [8]; it shows 
varied behaviour. Although the two theorems are found to  be true a t  strong-coupling, 
the two-electron system exhibits a low-spin ground state as the Hubbard repulsion is 
reduced. The reason is simple, the free boundary conditions break the single-particle 
degeneracy of the ground state, and so the theorem applies but the frustration is 
lost. Extending the strong-coupling problem to three particles produces a further 
suprise, because the three-particle ground state is found to  be low spin at  -4.9262t in 
comparison with the best high-spin energy of -4.6458t. We believe that only periodic 
boundary conditions should be studied, because the ‘chiral’ degeneracy remains, and 
this is the crucial manifestation of topological frustration. 

4. A n  a n a l y t i c  Gu tzwi l l e r  treatment 

Although some quite special limits of the Hubbard model are amenable to exact 
analysis, most are not. The present article treats two particles in an otherwise empty 
lattice, and the case of one charge carrier in an otherwise half-filled strong-couplzng 
Hubbard model constitutes the Nagaoka problem [4]. Even the Nagaoka problem is 
only soluble on a restricted class of topologies. Although a little is now known about 
the physical phenomena that are present in  these special situations, attempts to  ex- 
tend the ideas to  finite concentrations of holes have been unsuccessful. In this section, 
we will look at  one technique that does allow general concentrations of electrons. 

One technique which yields an estimate for the total energy for all electron densities 
in the strong-coupling limit, is the ‘Gutzwiller approximation’ [9]. Although magnetic 
correlations are ignored, the dominant contribution from the restriction of single occu- 
pancy to  each site is achieved, in principle. In our limit, the Gutzwiller ansatt involves 
projecting out all states with doubly occupied atoms from the non-interacting solu- 
tion. As described, the ansatz would yield a variational estimate for a paramagnetic 
state, which could then be used to  prove that a competitive state is unstable. In 
practice, however, an application of the ansa t z  is analytically too difficult and most 
calculations involve uncontrolled approximations which go under the name ‘cluster 
approximations’. We will perform such a ‘cluster approximation’ and thereby give up 
hope of any rigorous conclusions. Our calculation should simply be considered as in- 
dicative. When the ‘cluster approximations’ are compared directly with exact results, 
the calculated energies are found to  be within 20% and as such yield a viable indication 
of relative stability of different phases in clear-cut situations. Some numerical results 
employing the real Gutzwiller wavefunction may be found in the work of Schiba [9]. 

We employ the simple scheme of Razafimandimby [9] in the limit where the Hub- 
bard constant diverges, namely U H CO, and the doubly occupied sites are assumed 
to  be absent. The Gutzwiller approximation to the total energy is simply 

[(I - - 7 e I  E,  = -2Ztn,( l  - 2no)(l  - no)  
[(I - n d 4  + 41 
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where Z is the coordination number of the lattice and 

1. 

€ ( k ) < € ( k , )  

1 
nl = (cfUcitu), ,  = y exp[ih (R, - R ~ , ) I ( C ~ ~ C ~ , , ) , ,  ( 4 . 2 b )  

are the on-site and nearest-neighbour single-particle correlation functions evaluated 
in the non-interacting paramagnetic ground state. 

We compare this Gutzwiller energy with the energy of the saturated ferromagnet 

C(k)<f(kn) 

EF = - Z t n ,  ( 4 . 3 )  
where 

is the nearest-neighbour single-particle correlation function evaluated in the ferro- 
magnetic state with the same particle density as in the paramagnetic state but with 
a different Fermi surface, surrounding twice as many particles. 

In figure 2 we compare the Gutzwiller energy with the energy of the saturated 
ferromagnet for the square, the triangular and the FCC lattices. 

The result is in perfect agreement with our strong-coupling conjectures. The square 
lattice shows Kanamori paramagnetism near empty, transitting a t  about no = 0.275 
to Nagaoka ferromagnetism, which is relatively stable up to  half-filling. For concen- 
trations above half-filling, particle-hole symmetry implies a corresponding transition 
near no = 0.725.  The triangular lattice shows ferromagnetism below half-filling and 
paramagnetism above half-filling for our choice of a positive hopping matrix element. 
The FCC lattice shows paramagnetism below half-filling and ferromagnetism above 
half filling for our choice of a negative hopping matrix element. 

More ‘accurate’ determinations of the paramagnetic to  ferromagnetic phase tran- 
sitions have been published [9], but this is always accepting that such behavioul is 
real [ S I .  

The dimensional dependence alluded to  in section 2 ,  is predicted by this technique. 
In the low-density limit, there is a dull contribution to  both calculations coming from 
the fact that  ~(0) # 0. This leads to a contribution E = - 2 Z t n , ,  together with 
degeneracy breaking corrections of higher order. There are two types of corrections: 
firstly a term coming from the lowenergy dispersion of the energy bands, which con- 
tributes to both states in different ways, and secondly the Gutzwiller correction to  the 
non-interacting paramagnetic energy. The first contribution can be directly attributed 
to  Pauli exclusion and therefore always favours the paramagnetic state. If the low- 
energy Bloch dependence is quadratic, then this contribution scales as nf+2)’d. The 
second contribution is only applicable for the paramagnetic phase and corresponds to 
the effects of the Hubbard repulsion and therefore favours the ferromagnetic state. 
Expanding ( 4 . 1 )  shows that this contribution scales as no”. For three dimensions the 
Pauli exclusion argument clearly dominates, whereas for two dimensions we have the 
limiting case. The  two contributions are comparable and their relative sizes must 
be studied for each case independently, as we have done in this section. The FCC 
lattice corresponds to  one pseudo-dimension and ferromagnetism always wins in one 
dimension, although this result should be viewed as a breakdown of the Gutzwillei 
approximation for the true one-dimensional chain. 
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Figure 2. A comparison between our analytic Gutzwiller energy, denoted &, 
and the energy of the saturated ferromagnet, denoted E F .  The energies have been 
normalized ‘per atom’ and are calculated as a function of electron density per spin. 
(4) The square lattice. The points denoted (t) mark the position where a phase 
transition would be expected. The ferromagnetic state is predicted to be relatively 
stable near half-filling and the paramagnetic state is predicted to be stable near empty 
and full. ( 6 )  The triangular lattice where the hopping matrix element is assumed 
to be positive. The ferromagnetic state is predicted to be relatively stable below 
half-filling and the paramagnetic state is predicted to be stable above half-filling. 
( c )  The FCC lattice, where the hopping matrix element is assumed to be negative. 
The ferromagnetic state is predicted to be relatively stable above half-filling and the 
paramaeetic state is predicted to be stable below half filling. 

5 .  Conclusions 

For two holes moving around under the action of the Hubbard model in an otherwise 
empty lattice, the total spin of the ground state depends on the topological connec- 
tivity. For systems with a non-degenerate single-particle ground state, the pair is in 
a relative singlet and for systems with a degenerate single-particle ground state, the 
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pair is in a relative triplet. This result suggests that antiferromagnetically frustrated 
systems with positive hopping matrix elements should exhibit special behaviour, in 
an analogous way to  that found for the Nagaoka problem. 

The  thermodynamic limit poses severe technical difficulties, and this casts se- 
vere doubts upon the relevance of our result for real systems. For three-dimensional 
systems with only discrete single-particle degeneracy, ferromagnetism is not to  be ex- 
pected for a finite number of holes greater than the ground state degeneracy. For 
two-dimensional systems and for three-dimensional systems with a one-dimensional 
single-particle ground state degeneracy, the result may be relevant, but more work 
needs to  be performed to justify its use. 

We conjecture that the strong-coupling ground state to  the triangular lattice Hub- 
bard model with a positive hopping matrix element, is ferromagnetic for concentrations 
less than half-filled and paramagnetic for concentrations greater than half-filled. This 
result is consistent with Nagaoka’s theorem, the theorem in this article and most of the 
cluster calculations performed with periodic boundary conditions. It is also ‘predicted’ 
by our analytic Gutzwiller calculations. 

We believe that the infinitely strong-coupling limit a t  al l  concentrations of particles 
may be understood by considering the smallest loop in the structure. For the Nagaoka 
problem this readily predicts the lattice result, and the results of this article are also 
predicted by the smallest loop. If we take the triangular lattice as an example, then 
the triangle is the smallest loop. There is only one relevant state, and this predicts 
ferromagnetism below half-filling and paramagnetism above half filling. Moving on 
to the square lattice, we find two relevant states to the square. With two particles 
we find a singlet ground state, whereas for three particles we find a ferromagnetic 
ground state. This suggests paramagnetism a t  low band-filling with a transition to 
ferromagnetism near half band-filling. At infinitely strong-coupling, we believe that 
the dominant effect comes from Fermi statistics and may be thought of in real space 
as ‘swapping’ over two particles by taking one of the two around a loop. This is the 
motivation behind our assertion. 

Although we have not achieved a demonstration that long-range magnetic phase 
coherence results in the infinitely strong-coupling Hubbard model, there is a second 
level on which our result can be considered. For the Nagaoka result, the thermo- 
dynamic limit has also proved difficult, but a certain degree of understanding has 
arisen from the idea of a ‘spin polaron’ [lo]. Since the topological effects are local 
in character, one expects that  the coherence in the vicinity of the hole may well be 
ferromagnetic, even though there is no long-range order. The same idea may be ap- 
plied to the result of the present paper. Even if there is no long-range order, a t  the 
two-particle level, one would still expect strong triplet correlations to be present as 
the particles are brought together. 

Finally, we would like to  point out that  ferromagnetic Nickel crystallizes into a 
FCC structure, and this is a topologically frustrated structure with a one-dimensional 
single-particle ground state degeneracy. The frustration for the FCC lattice appears 
to be the strongest topological effect considered in this article, and so geometry may 
well play a role in stabilising the ferromagnetism of Nickel. 
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